Signals, systems, acoustics and the ear

Week 4

Signals through Systems

Crucial ideas

- Any signal can be constructed as a sum of sine waves
- In a linear time-invariant (LTI) system, the response to a sinusoid is the same whether it is on its own, or as one component of a complex signal
 - No interaction of components
- An LTI system *never* introduces frequency components not present in the input
 - a sinusoidal input gives a sinusoidal output of the same frequency
- Hence, the output is the sum of the individual sinusoidal responses to each individual sinusoidal component of the input

Six steps to determining system output to any particular input

- 1. Obtain the system's amplitude response
- 2. Obtain the system's phase response
- 3. Analyse the waveform to obtain its spectrum (amplitude and phase)
- 4. Calculate the output amplitude of each component sinusoid in the input spectrum
- 5. Calculate the output phase of each sinusoid
- 6. Sum the output component sinusoids

A particular example

Step 1: Measure the system's response

For example, by using sinewaves of different frequencies (as for the acoustic resonator)

Here the response has a gain of 1 for frequencies up to 250 Hz 0 for frequencies above 250 Hz

Assume phase response is a phase shift of zero degrees everywhere

Step 2: Sawtooth amplitude spectrum

A(n) = A(1)/n

(A is the amplitude of a harmonic, index n is harmonic number)

A(1) is for this example 1 volt

Sawtooth phase spectrum

All components have a phase of -90° (relative to a cosine)

Remember!

- Response = Output amplitude/Input amplitude
- So on linear scales ...
 - Output amplitude = Response x Input amplitude
- But on dB (logarithmic) scales
 - Output amplitude = Response + Input amplitude
 - because $log(a \times b) = log(a) + log(b)$
- For phase
 - Output phase = Response phase + Input phase

Response to harmonic 1 (100 Hz)

Graph of signal - system - output for harmonic 1

Response to harmonic 2 (200 Hz)

Input	Response	Output
amplitude	gain	amplitude
1/2 V	1	?

Input phase Phase shift of response -90 0

Graph of signal - system - output for harmonic 2

Response to harmonic 3 (300 Hz)

Input	Response	Output
amplitude	gain	amplitude
1/3 V	0	?

Input phase Phase shift of response -90 0

Response to whole signal

15

A realistic amplitude response

17

A phase response

Sawtooth Wave: Input - System - Output

Note that multiplications are done 'all at once'

for comparison: ideal lowpass filter

Linear vs. logarithmic amplitude scales

Linear vs. logarithmic *frequency* scales

Logarithmic amplitude scales matter for calculations. Logarithmic frequency scales are a matter of convenience.

Using an aperiodic input (white noise): A *continuous* spectrum

Note that additions are done 'all at once'

23

Consider this frequency response (what is it?)

White Noise

input

output

Single pulse

input

output

More complex examples

Bandpass filters & filterbanks

Practical spectral analysis

- Most analogue signals of interest are not easily mathematically specified ...
 - so applying a Fourier transform directly (through an equation) is not possible
- Digital techniques allow the use of the FFT

simply by sampling the waveform values

. . .

- How was this done back in the day? Or even now, in analogue form?
- What kind of LTI system separates out frequency components?

Try this out on an old friend ...

Sawtooth amplitude spectrum

Need a bandpass filter with variable centre frequency

Tune filter to 200 Hz

Tune filter to 300 Hz

Tune filter to intermediate frequencies

To construct the spectrum

•35

Can do this in two ways ...

- As shown, with a tunable bandpass filter
 cheap to implement, slow to run
- Or, with a *filter bank*
 - A set of bandpass filters whose centre frequencies are distributed over a desired frequency range
 - fast because of parallel processing but expensive in hardware
- Exotic fact you can ignore
 - an Fourier analysis can be thought of as implementing a filter bank

What filter properties affect the output of a filterbank?

- ????
- ???? of filters in a filter bank determines the resolution of the spectrum
- Need to space filters relative to ????
- Why?
 - don't want holes in the spectrum
 - could miss spectral components

How the properties of a filter bank influence signals through it: I. Resolution in frequency

Consider a signal that consists of two sinusoids reasonably close in frequency, which are to be analysed in a filter bank.

Filtering through narrow filters

Filtering through wide filters

•40

A more extreme example

Narrow band filters

Wide band filters

Spectral analysis with a filterbank:

No single unique spectrum!

COMPARISON OF (Idealized) MEASURED SPECTRA FOR WIDE AND NARROW FILTER BANK ANALYZERS

Impulses through narrow and wide filters

Bandwidth & Damping

- Two ways of describing the same thing:
 - **Narrow** Bandwidth = **Low** Damping
 - Wide Bandwidth = High Damping

Summary

- Bandpass filters with a long impulse response have narrow frequency responses.
- Bandpass filters with a short impulse response have broad frequency responses.

How the properties of a filter bank influence signals through it: II. Resolution in time

Consider a signal that consists of two impulses reasonably close in time, which are to be analysed in a filter bank.

Filtering through a wide filter

Filtering through a narrow filter

Summary

 Filter banks which consist of relatively narrow filters are good for seeing fine spectral detail ...

- but poor for temporal detail

 Filter banks which consist of relatively wide filters are good for seeing fine temporal detail ...
– but poor for spectral detail

Applying these concepts to a complex periodic wave consisting of 20 equal-amplitude harmonics of 100 Hz

A complex periodic wave consisting of 20 equal-amplitude harmonics of 100 Hz

Narrow-band (50 Hz) filtering at 200, 250, 300, 350 and 400 Hz

Wide-band (300 Hz) filtering at 200, 250, 300, 350 and 400 Hz

What does a filter bank do to a speech waveform?

a 6-channel filter bank

Narrow bands of speech at different frequencies: Individual outputs from a filter bank

Of course, you need many more filters in the filter bank than seven.

 Sime (s)
 0.0
 0.2
 0.4
 0.6
 0.8
 1.0
 1.2
 1.4
 1.6
 1.8
 1.6

 5400
 Fresamp(1.09)rate=11025,filt=IIR)
 SP.10
 SP.10
 SP.10

 5000
 1.6
 1.18
 -

e (s) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.4 1.6 1.6 1.8

What can you use filter banks for?

Other than spectral analyses ...

To make spectrograms or voiceprints ...

To make a graphic equaliser ...

•63

To process sounds for a multi-channel cochlear implant (an electronic filter bank substitutes for the basilar membrane)

In hearing aids ...

Shape the spectrum of incoming sounds to compensate for the hearing loss

frequency regions with bigger loss get greater gain

a graphic equaliser!

In computational models of the auditory periphery.

Imagine that each afferent auditory nerve fibre has a bandpass filter attached to its input. •66